Carleton Eduardo Corrales

Learn More
The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory(More)
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell-derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the(More)
In mammals, hair cells and auditory neurons lack the capacity to regenerate, and damage to either cell type can result in hearing loss. Replacement cells for regeneration could potentially be made by directed differentiation of human embryonic stem (hES) cells. To generate sensory neurons from hES cells, neural progenitors were first made by suspension(More)
Neural differentiation of embryonic stem (ES) cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming. Neural progenitors were produced from murine ES cells by a(More)
The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple(More)
One of the greatest challenges in the treatment of inner-ear disorders is to find a cure for the hearing loss that is caused by the loss of cochlear hair cells or spiral ganglion neurons. The recent discovery of stem cells in the adult inner ear that are capable of differentiating into hair cells, as well as the finding that embryonic stem cells can be(More)
In vertebrates, the paired-box transcription factor Pax-2 is one of the earliest markers of the developing inner ear and is robustly expressed in the otic placode and the otic vesicle. Mutations in the Pax-2 gene result in developmental defects of the vestibular and auditory apparatus. We set out to investigate whether regions of Pax-2 expression in the(More)
The recent isolation of adult stem cells from the mouse utricle that have the capacity to differentiate into cells from all three germ layers--and more importantly, into inner ear hair cells--offers a viable option for the treatment of hearing loss. The finding that embryonic stem cells are also capable of differentiating into hair cells further expands the(More)
In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here(More)
BACKGROUND Avulsion of the abducens nerve in the setting of geniculate ganglion injury after temporal bone fracture is unreported previously. We discuss clinical assessment and management of a patient with traumatic avulsion of cranial nerve (CN) VI in the setting of an ipsilateral CN VII injury after temporal bone fracture and call attention to this(More)