Learn More
Mitochondrial DNA control region sequences were analyzed from 162 wolves at 27 localities worldwide and from 140 domestic dogs representing 67 breeds. Sequences from both dogs and wolves showed considerable diversity and supported the hypothesis that wolves were the ancestors of dogs. Most dog sequences belonged to a divergent monophyletic clade sharing no(More)
The gray wolf (Canis lupus) is one of the few large predators to survive the Late Pleistocene megafaunal extinctions [1]. Nevertheless, wolves disappeared from northern North America in the Late Pleistocene, suggesting they were affected by factors that eliminated other species. Using skeletal material collected from Pleistocene permafrost deposits of(More)
To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a(More)
The fragmentation of populations is an increasingly important problem in the conservation of endangered species. Under these conditions, rare migration events may have important effects for the rescue of small and inbred populations. However, the relevance of such migration events to genetically depauperate natural populations is not supported by empirical(More)
Mitochondrial DNA sequences isolated from ancient dog remains from Latin America and Alaska showed that native American dogs originated from multiple Old World lineages of dogs that accompanied late Pleistocene humans across the Bering Strait. One clade of dog sequences was unique to the New World, which is consistent with a period of geographic isolation.(More)
The grey wolf has one of the largest historic distributions of any terrestrial mammal and can disperse over great distances across imposing topographic barriers. As a result, geographical distance and physical obstacles to dispersal may not be consequential factors in the evolutionary divergence of wolf populations. However, recent studies suggest(More)
No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any(More)
The spectacular diversity in size, conformation, and pelage that characterizes the domestic dog reflects not only the intensity of artificial selection but ultimately the genetic variability of founding populations. Here we review past molecular genetic data that are relevant to understanding the origin and phylogenetic relationships of the dog. DNA-DNA(More)
Dogs (Canis familiaris) were domesticated from the gray wolf (Canis lupus) at least 14,000 years ago, and there is evidence of dogs with phenotypes similar to those in modern breeds 4000 years ago. However, recent genetic analyses have suggested that modern dog breeds have a much more recent origin, probably <200 years ago. To study the origin of(More)
By the mid 20th century, the grey wolf (Canis lupus) was exterminated from most of the conterminous United States (cUS) and Mexico. However, because wolves disperse over long distances, extant populations in Canada and Alaska might have retained a substantial proportion of the genetic diversity once found in the cUS. We analysed mitochondrial DNA sequences(More)