Carles Padró

Learn More
Consider an abstract storage device Σ(G) that can hold a single element x from a xed, publicly known nite group G. Storage is private in the sense that an adversary does not have read access to Σ(G) at all. However, Σ(G) is non-robust in the sense that the adversary can modify its contents by adding some offset ∆ ∈ G. Due to the privacy of the storage(More)
Error-correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, the connections between codes, matroids, and a special class of secret sharing schemes, namely, multiplicative linear secret sharing schemes (LSSSs), are studied. Such schemes are known to enable multiparty computation protocols secure(More)
We study the information rate of secret sharing schemes whose access structure is bipartite. In a bipartite access structure there are two classes of participants and all participants in the same class play an equivalent role in the structure. We characterize completely the bipartite access structures that can be realized by an ideal secret sharing scheme.(More)
Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this(More)
Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. In this work, the characterization of ideal multipartite access structures is studied with all generality. Our results are based on the well-known(More)