Carlee E. Ashley

Learn More
Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including(More)
Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic insertion or chemical(More)
BACKGROUND The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system. SCOPE OF REVIEW This review describes our recent discovery that living cells can organize extended(More)
The loading and containment of cargo within nanoparticles and their efficient delivery to cells represent a primary challenge in nanomedicine. We report lipid exchange between free and mesoporous silica nanoparticle-supported lipid bilayers as an effective means of containing cargo, controlling charge, and directing delivery to mammalian cells. The delivery(More)
Mesoporous silica nanoparticle-supported lipid bilayers, or "protocells", exhibit a high loading capacity, enhanced colloidal stability, and peptide-directed, cell-specific uptake, making them especially well-suited for targeted delivery of protein toxins to cancer. Protocells loaded with ricin toxin A-chain (RTA) and targeted to hepatocellular carcinoma(More)
The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for(More)
When lipid-directed assembly of silicic acid precursors is conducted in the presence of living cells, the cells intervene, surrounding themselves with a fluid, multilayered lipid vesicle that interfaces coherently with an ordered silica mesophase. This bio/nano interface is unique in that its uniform nanostructure prevents excessive drying of water,(More)
The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid(More)
We report a unique approach in which living cells direct their integration into 3D solid-state nanostructures. Yeast cells deposited on a weakly condensed lipid/silica thin film mesophase actively reconstruct the surface to create a fully 3D bio/nano interface, composed of localized lipid bilayers enveloped by a lipid/silica mesophase, through a(More)
Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional(More)