Carla Garzon

Learn More
Pythium identification is based on several characteristics with considerable variation, particularly in Pythium irregulare Buis. as currently recognized. Thirty-one isolates of Pythium irregulare Buis. from various hosts and geographic regions were compared by genetic analysis of multiloci DNA fingerprints, sequence analysis of nuclear and mitochondrial(More)
Eight pathogenic races, determined based on the virulence displayed on differential chickpea cultivars, have been recognized in Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. In order to elucidate the genetic relationships between these races and understand how virulence evolved, we analyzed the sequences of 32 genomic(More)
Plant biosecurity requires rapid identification of pathogenic organisms. While there are many pathogen-specific diagnostic assays, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitations during assembly and(More)
Sclerotinia sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Eriks, and S. homoeocarpa F.T. Benn are the most relevant plant pathogenic species within the genus Sclerotinia because of their large range of economically important hosts, including tomato, peanut, alfalfa, and turfgrass, among others. Species identification based on morphological(More)
Pythium aphanidermatum is one of the most aggressive species in the genus and has a wide host range, but little is known about its population genetic structure. We tested 123 P. aphanidermatum isolates with six AFLP primer combinations and four SSR markers. The genetic diversity of P. aphanidermatum was 0.34 with AFLP and 0.55 with SSR markers. SSR(More)
Although plant diseases can be caused by bacteria, viruses, and protists, most are caused by fungi and fungus-like oomycetes. Intensive use of fungicides with the same mode of action can lead to selection of resistant strains increasing the risk of unmanageable epidemics. In spite of the integrated use of nonchemical plant disease management strategies,(More)
Globisporangium Uzuhashi, Tojo & Kakish. (syn. Pythium Pringsheim) species cause many plant diseases, including Pythium damping-off, leaf and fruit blights, and root rots. Fungicide resistant isolates are selected by repeated use of a single active ingredient on infected crops without rotation. Previous studies demonstrated increased pathogenicity and(More)
Pythium species are important soilborne pathogens occurring in the forest nursery industry of the Pacific Northwest. However, little is known about their genetic diversity or population structure and it is suspected that isolates are moved among forest nurseries on seedling stock and shared field equipment. In order to address these concerns, a total of 115(More)
Early stage infections caused by fungal/oomycete spores may not be detected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target multiple unique signature loci of pathogens in an infected plant(More)