Learn More
We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most(More)
Parasites steal resources that a host would otherwise direct toward its own growth and reproduction. We use this fundamental notion to explain resource-dependent virulence in a fungal parasite (Metschnikowia)-zooplankton host (Daphnia) system and in a variety of other disease systems with invertebrate hosts. In an experiment, well-fed hosts died faster and(More)
Epidemiologists increasingly realize that species interactions (e.g. selective predation) can determine when epidemics start and end. We hypothesize here that resource quality can also strongly influence disease dynamics: epidemics can be inhibited when resource quality for hosts is too poor and too good. In three lakes, resource quality for the zooplankton(More)
Species interactions may profoundly influence disease outbreaks. However, disease ecology has only begun to integrate interactions between hosts and their food resources (foraging ecology) despite that hosts often encounter their parasites while feeding. A zooplankton-fungal system illustrated this central connection between foraging and transmission. Using(More)
Dormancy is a common way in which organisms survive environmental conditions that would be lethal to the active individual. However, while dormant, individuals forego reproduction. Hence theory suggests an optimal time in which to enter dormancy, depending on risks associated with both remaining active and entering dormancy. When these relative risks differ(More)
We studied the selection response of the freshwater grazing zooplankter, Daphnia galeata, to increased abundance of cyanobacteria in its environment. Cyanobacteria are a poor-quality and often toxic food. Distinct genotypes of D. galeata were hatched from diapausing eggs extracted from three time horizons in the sediments of Lake Constance, Europe, covering(More)
Natural selection can lead to rapid changes in organisms, which can in turn influence ecosystem processes 1. A key factor in the functioning of lake ecosystems is the rate at which primary producers are eaten, and major consumers, such as the zooplankton Daphnia 2 , can be subject to strong selection pressures when phytoplankton assemblages change. Lake(More)
Despite the importance of dispersal to ecology, accurate estimates of dispersal rates are often difficult to obtain, especially for organisms that rely on passive dispersal of propagules to colonize new sites. To investigate potential dispersal vectors and relative colonization rates of zooplankton, we conducted a field experiment in which we restricted(More)
The "dilution effect" concept in disease ecology offers the intriguing possibility that clever manipulation of less competent hosts could reduce disease prevalence in populations of more competent hosts. The basic concept is straightforward: host species vary in suitability (competence) for parasites, and disease transmission decreases when there are more(More)
The "healthy herds" hypothesis suggests that selective predators, by acting as parasite sinks, may inhibit the start of epidemics and reduce prevalence of infection. Here, we describe a counter-example using field patterns, experiments, and a model. The predator Chaoborus releases infective spores of a fungal parasite and, in doing so, may facilitate(More)