Carl Kesselman

Learn More
“Grid” computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the “Grid problem,” which is defined as flexible, secure,(More)
Grid technologies enable large-scale sharing of resources within formal or informal consortia of individuals and/or institutions: what are sometimes called virtual organizations. In these settings, the discovery, characterization, and monitoring of resources, services, and computations can be challenging due to the considerable diversity, large numbers,(More)
State-of-the-art and emerging scientific applications require fast access to large quantities of data and commensurately fast computational resources. Both resources and data are often distributed in a wide-area network with components administered locally and independently. Computations may involve hundreds of processes that must be able to acquire(More)
Metacomputing systems are intended to support remote and/or concurrent use of geographically distributed computational resources. Resource management in such systems is complicated by five concerns that do not typically arise in other situations: site autonomy and heterogeneous substrates at the resources, and application requirements for policy(More)
In “Grids” and “collaboratories,” we find distributed communities of resource providers and resource consumers, within which often complex and dynamic policies govern who can use which resources for which purpose. We propose a new approach to the representation, maintenance, and enforcement of such policies that provides a scalable mechanism for specifying(More)
High-performance execution in distributed computing environments often requires careful selection and configuration not only of computers, networks, and other resources but also of the protocols and algorithms used by applications. Selection and configuration in turn require access to accurate, up-to-date information on the structure and state of available(More)
The Globus project is a multi-institutional research effort that seeks to enable the construction of computational grids providing pervasive, dependable, and consistent access to high-performance computational resources, despite geographical distribution of both resources and users. Computational grid technology is being viewed as a critical element of(More)
The realization of end-to-end quality of service (QoS) guarantees in emerging network-based applications requires mechanisms that support first dynamic discovery and then advance or immediate reservation of resources that will often be heterogeneous in type and implementation and independently controlled and administered. We propose the Globus Architecture(More)