Carl D. Hacker

Learn More
Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical(More)
Classical accounts of the pathophysiology of Parkinson's disease have emphasized degeneration of dopaminergic nigrostriatal neurons with consequent dysfunction of cortico-striatal-thalamic loops. In contrast, post-mortem studies indicate that pathological changes in Parkinson's disease (Lewy neurites and Lewy bodies) first appear primarily in the lower(More)
BACKGROUND The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm. METHODOLOGY/PRINCIPAL FINDINGS The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one(More)
The discovery that spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals contain information about the functional organization of the brain has caused a paradigm shift in neuroimaging. It is now well established that intrinsic brain activity is organized into spatially segregated resting-state networks (RSNs). Less is known regarding how(More)
Resting state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive functions. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood(More)
BACKGROUND Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE To demonstrate that a(More)
A long-held view is that stroke causes many distinct neurological syndromes due to damage of specialized cortical and subcortical centers. However, it is unknown if a syndrome-based description is helpful in characterizing behavioral deficits across a large number of patients. We studied a large prospective sample of first-time stroke patients with(More)
Deficits following stroke are classically attributed to focal damage, but recent evidence suggests a key role of distributed brain network disruption. We measured resting functional connectivity (FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients,(More)
Recent advances in basic neuroscience research across a wide range of methodologies have contributed significantly to our understanding of human cortical electrophysiology and functional brain imaging. Translation of this research into clinical neurosurgery has opened doors for advanced mapping of functionality that previously was prohibitively difficult,(More)
OBJECTIVE The role of resting state functional networks in epilepsy is incompletely understood. While some pathologic diagnoses have been shown to have maintained but altered resting state connectivity, others have implicated resting state connectivity in disease progression. However little is known about how these resting state networks influence the(More)