Learn More
Internal brain states form key determinants for sensory perception, sensorimotor coordination and learning. A prominent reflection of different brain states in the mammalian central nervous system is the presence of distinct patterns of cortical synchrony, as revealed by extracellular recordings of the electroencephalogram, local field potential and action(More)
To investigate synaptic events underlying sensory perception, we made whole-cell membrane potential recordings of barrel cortex neurons in awake mice while recording whisker-related behavior. During quiet periods, we recorded slow, large-amplitude membrane potential changes, which switched during whisking to small, fast fluctuations that were correlated(More)
Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are(More)
Neuronal response properties are typically probed by intracellular measurements of current-voltage (I-V) relationships during application of current or voltage steps. Here we demonstrate the measurement of a novel I-V curve measured while the neuron exhibits a fluctuating voltage and emits spikes. This dynamic I-V curve requires only a few tens of seconds(More)
Neocortical GABAergic neurons have diverse molecular, structural and electrophysiological features, but the functional correlates of this diversity are largely unknown. We found unique membrane potential dynamics of somatostatin-expressing (SOM) neurons in layer 2/3 of the primary somatosensory barrel cortex of awake behaving mice. SOM neurons were(More)
Discrimination between foods is crucial for the nutrition and survival of animals. Remarkable progress has been made through molecular and genetic manipulations in the understanding of the coding of taste at the receptor level. However, much less is known about the cortical processing of taste sensation and the organizing principles of the gustatory cortex(More)
Classical studies of mammalian movement control define a prominent role for the primary motor cortex. Investigating the mouse whisker system, we found an additional and equally direct pathway for cortical motor control driven by the primary somatosensory cortex. Whereas activity in primary motor cortex directly evokes exploratory whisker protraction,(More)
Cortical dynamics can be imaged at high spatiotemporal resolution with voltage-sensitive dyes (VSDs) and calcium-sensitive dyes (CaSDs). We combined these two imaging techniques using epifluorescence optics together with whole cell recordings to measure the spatiotemporal dynamics of activity in the mouse somatosensory barrel cortex in vitro and in the(More)
We investigated the impact of thalamus on ongoing cortical activity in the awake, behaving mouse. We demonstrate that the desynchronized cortical state during active behavior is driven by a centrally generated increase in thalamic action potential firing, which can also be mimicked by optogenetic stimulation of the thalamus. The thalamus therefore is key in(More)
Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell(More)