Carine Savarin

Learn More
Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS). Cells resident within the central nervous system (CNS) are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood.(More)
Tumor necrosis factor (TNF) has pleiotropic functions during both the demyelinating autoimmune disease multiple sclerosis (MS) and its murine model experimental autoimmune encephalomyelitis (EAE). How TNF regulates disability during progressive disease remains unresolved. Using a progressive EAE model characterized by sustained TNF and increasing morbidity,(More)
IL-27 is a pleiotropic member of the IL-6 and IL-12 cytokine family composed of the IL-27p28 and the EBV-induced gene 3. IL-27 and its receptor mRNA are both upregulated in the CNS during acute encephalomyelitis induced by the JHM strain of mouse hepatitis virus (JHMV) and sustained during viral persistence. Contributions of IL-27 to viral pathogenesis were(More)
The interplay between IFN-γ, IL-17 and neutrophils during CNS inflammatory disease is complex due to cross-regulatory factors affecting both positive and negative feedback loops. These interactions have hindered the ability to distinguish the relative contributions of neutrophils, Th1 and Th17 cell-derived effector molecules from secondary mediators to(More)
Therapeutic modalities effective in patients with progressive forms of multiple sclerosis (MS) are limited. In a murine model of progressive MS, the sustained disability during the chronic phase of experimental autoimmune encephalomyelitis (EAE) correlated with elevated expression of interleukin (IL)-6, a cytokine with pleiotropic functions and therapeutic(More)
The influence of CD25(+)CD4(+) regulatory T cells (Treg) on acute and chronic viral infection of the central nervous system (CNS) was examined using a glial tropic murine coronavirus. Treg in the CNS were highest during initial T cell mediated virus control, decreased and then remained relatively stable during persistence. Anti-CD25 treatment did not affect(More)
Neurotropic coronavirus induces an acute encephalomyelitis accompanied by focal areas of demyelination distributed randomly along the spinal column. The initial areas of demyelination increase only slightly after the control of infection. These cir-cumscribed focal lesions are characterized by axonal sparing, myelin ingestion by macrophage/microglia, and(More)
Microbial infections have been implicated in initiating and enhancing severity of autoimmune diseases including the demyelinating disease multiple sclerosis (MS). Nevertheless, the incidence of both acute and persisting viral infections without evidence of autoimmune sequelae suggests that this process is well controlled. The conditions promoting or(More)
Infection of the CNS (central nervous system) with a sublethal neurotropic coronavirus (JHMV) induces a vigorous inflammatory response. CD4⁺ and CD8⁺ T cells are essential to control infectious virus but at the cost of tissue damage. An enigma in understanding the contribution of T cell subsets in pathogenesis resides in their distinct migration pattern(More)
Genetic and environmental factors, i.e. infections, have been proposed to contribute to disease induction and relapsing events in multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). While research has mainly focused on virus associated autoimmune activation, less is known about prevention of autoimmunity,(More)