Carina Rofner

Learn More
The recognition and discrimination of phytoplankton species is one of the foundations of freshwater biodiversity research and environmental monitoring. This step is frequently a bottleneck in the analytical chain from sampling to data analysis and subsequent environmental status evaluation. Here we present phytoplankton diversity data from 49 lakes(More)
Understanding how resource partitioning works among taxa is crucial in explaining coexistence and competition within a community. Here, we assessed resource partitioning among freshwater bacterial groups from two oligotrophic lakes using four types of organic substrates as compound models. Substrate uptake patterns were examined by microautoradiography(More)
Phosphorus often limits bacterial production in freshwater ecosystems. However, little is known on whether different bacteria contribute to inorganic and organic phosphorus uptake proportionally to their relative abundance and production. Here, we followed the temporal dynamics of the main heterotrophic bacterial taxa taking up inorganic phosphate (33 P-Pi)(More)
Although phosphorus limitation is common in freshwaters and bacteria are known to use dissolved organic phosphorus (DOP), little is known about how efficiently DOP compounds are taken up by individual bacterial taxa. Here, we assessed bacterial uptake of three model DOP substrates in two mountain lakes and examined whether DOP uptake followed(More)
Heterotrophic bacteria are thought to be phosphorus-rich organisms with relatively homeostatic stoichiometry, but the elemental composition of natural bacterial communities has rarely been assessed. Here we tested whether bacterial stoichiometry changes with the trophic status of lakes by assessing the elemental composition of the bacterial-dominated(More)
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon(More)
  • 1