Carey Y. L. Huh

Learn More
Neurons of the medial septum and diagonal band of Broca (MS-DBB) provide an important input to the hippocampus and are critically involved in learning and memory. Although cholinergic and GABAergic MS-DBB neurons are known to modulate hippocampal activity, the role of recently described glutamatergic MS-DBB neurons is unknown. Here, we examined the(More)
Basal forebrain neurons play an important role in memory and attention. In addition to cholinergic and GABAergic neurons, glutamatergic neurons and neurons that can corelease acetylcholine and glutamate have recently been described in the basal forebrain. Although it is well known that nerve growth factor (NGF) promotes synaptic function of cholinergic(More)
The coupling of high frequency oscillations (HFOs; >100 Hz) and theta oscillations (3-12 Hz) in the CA1 region of rats increases during REM sleep, indicating that it may play a role in memory processing. However, it is unclear whether the CA1 region itself is capable of providing major contributions to the generation of HFOs, or if they are strictly driven(More)
The hippocampus is a heavily studied brain structure due to its involvement in learning and memory. Detailed models of excitatory, pyramidal cells in hippocampus have been developed using a range of experimental data. These models have been used to help us understand, for example, the effects of synaptic integration and voltage gated channel densities and(More)
Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens-lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their(More)
The fast-firing properties of parvalbumin-positive (PV+) interneurons, and their extensive connections with neighbouring excitatory neurons, provide them with enormous potential to influence network rhythms and hence behaviour. Thus, it is not entirely surprising that these cells have been implicated in playing a role in a variety of pathologies (e.g.(More)
UNLABELLED Theta oscillations are essential for learning and memory, and their generation requires GABAergic interneurons. To better understand how theta is generated, we explored how parvalbumin (PV) and somatostatin (SOM) interneurons in CA1 stratum oriens/alveus fire during hippocampal theta and investigated synaptic mechanisms underlying their behavior.(More)
Theta oscillations are one of the most prominent and well-studied clocking mechanisms detected in the mammalian brain. Recorded from the hippocampus during R. E.M. sleep and exploratory behavior, these 3-12 Hz rhythms are thought to play a lead role in spatial navigation, episodic memory, and the timing of place cell firing [1]. Although these oscillations(More)
Although hippocampal theta, a 4-12 Hz rhythm associated with episodic memory, has been studied extensively, the cellular mechanisms underlying its generation are unclear. OLM cells have been considered pacemakers of local CA1 theta [1], but recent experimental work has disputed this role [2]. The complex interactions that OLM cells have with other cell(More)
From several experimental and modeling studies, it has become apparent that networks of parvalbumin-positive (PV+), fast-firing interneurons play an essential role in generating population gamma rhythms [1]. Many features of these perisomatically-inhibiting PV+ cell networks influence the generation of gamma oscillations, a number of which have been(More)
  • 1