Learn More
In Arabidopsis, the DELLA subfamily of GRAS regulatory genes consists of GAI, RGA, RGA-LIKE1 (RGL1), RGL2, and RGL3. GAI and RGA are known to be negative regulators of gibberellin (GA) responses. We found that RGL1 is a similar repressor of GA responses, as revealed by RGL1 gain-of-function and loss-of-function phenotypes. Repression of GA responses in(More)
The gaseous phytohormone ethylene C(2)H(4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in(More)
Arabidopsis thaliana has five ethylene hormone receptors, which bind ethylene and elicit responses critical for plant growth and development. Here we describe a negative regulator of ethylene responses, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), which regulates the function of at least one of the receptors, ETR1, in Arabidopsis. RTE1 was identified based on(More)
Ethylene is an important plant growth regulator perceived by membrane-bound ethylene receptors. The ETR1 ethylene receptor is positively regulated by a predicted membrane protein, RTE1, based on genetic studies in Arabidopsis. RTE1 homologs exist in plants, animals and protists, but the molecular function of RTE1 is unknown. Here, we examine RTE1 expression(More)
The gaseous plant hormone ethylene plays important roles in plant growth and development. Recent discoveries have expanded our linear view of ethylene signaling by revealing an elaborate signaling network with multiple regulatory circuits. At the membrane, the ethylene receptors form heteromeric and higher order complexes providing enhanced sensitivity and(More)
Ethylene is an important regulator of plant growth, development and responses to environmental stresses. Arabidopsis perceives ethylene through five homologous receptors that negatively regulate ethylene responses. RTE1, a novel gene conserved in plants, animals and some protists, was recently identified as a positive regulator of the ETR1 ethylene(More)
Land plants evolved more than 450 million years ago from a lineage of freshwater charophyte green algae(1). The extent to which plant signalling systems existed before the evolutionary transition to land is unknown. Although charophytes occupy a key phylogenetic position for elucidating the origins of such signalling systems(2-4), there is a paucity of(More)
Tremendous strides have been made in the past year toward elucidating the ethylene-response pathway. Ethylene is perceived by a family of histidine kinase-like receptors, which negatively regulate ethylene responses. Binding of ethylene requires a copper cofactor, and proper receptor function relies on a copper transporter. Downstream, EIN2 is a(More)
The ethylene binding domain (EBD) of the Arabidopsis thaliana ETR1 receptor is modeled as three membrane-spanning helices. We surveyed ethylene binding activity in different kingdoms and performed a bioinformatic analysis of the EBD. Ethylene binding is confined to land plants, Chara, and a group of cyanobacteria but is largely absent in other organisms,(More)
The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants(More)