Candice Tsay

Learn More
A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm× 2 μm× 60 μm, suspended between two currentcarrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is(More)
An etch-free and cost-effective deposition and patterning method to fabricate mid-infrared chalcogenide glass waveguides for chemical sensing applications is introduced. As(2)S(3) raised strip optical waveguides are produced by casting a liquid solution of As(2)S(3) glass in capillary channel molds formed by soft lithography. Mid-IR transmission is(More)
Interfacing electronics and recording electrophysiological activity in mechanically active biological tissues is challenging. This challenge extends to recording neural function of brain tissue in the setting of traumatic brain injury (TBI), which is caused by rapid (within hundreds of milliseconds) and large (greater than 5% strain) brain deformation.(More)
Chalcogenide glass materials exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these photorefractive materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of two(More)
We demonstrate on-chip hybrid integration of chalcogenide glass waveguides and quantum cascade lasers (QCLs). Integration is achieved using an additive solution-casting and molding method to directly form As(2)S(3) strip waveguides on an existing QCL chip. Integrated As(2)S(3) strip waveguides constructed in this manner display strong optical confinement(More)
Traumatic brain injury (TBI) can be caused by motor vehicle accidents, falls and firearms. TBI can result in major neurological dysfunction such as chronic seizures and memory disturbances. To discover mechanisms of functional deficits underlying TBI, we developed a stretchable microelectrode array (SMEA),which can be used for continuous recording of(More)
We demonstrate low-loss chalcogenide (As(2)S(3)) waveguides on a LiNbO(3) substrate for the mid-IR wavelength (4.8 μm). Designed for single-mode propagation, they are fabricated through photolithography and dry-etching technology and characterized on a mid-IR measurement setup with a quantum cascade laser. For straight waveguides, propagation loss as low as(More)
Thin metal films deposited on elastomeric substrates can remain electrically conducting at tensile strains up to ~100%. We recently used finite-element simulation to explore the rupture process of a metal film on an elastomer. The simulation predicted the highest stretchability on stiff elastomeric substrates [1]. We now report experiments designed to(More)
  • 1