Candice Ginn T. Tahimic

Learn More
A number of chromosomal abnormalities including 19q deletions have been associated with the formation of human gliomas. In this study, we employed a proteomics-based approach to identify possible genes involved in glioma tumorigenesis which may serve as potential diagnostic molecular markers for this type of cancer. By comparing protein spots from gliomas(More)
Double strand break (DSB) recognition is the first step in the DSB damage response and involves activation of ataxia telangiectasia-mutated (ATM) and phosphorylation of targets such as p53 to trigger cell cycle arrest, DNA repair, or apoptosis. It was reported that activation of ATM- and Rad3-related (ATR) kinase by DSBs also occurs in an ATM-dependent(More)
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various(More)
Efficient regulation of transgene would greatly facilitate the analysis of gene function in biological systems for basic research and clinical applications. The tetracycline-regulatable system (TRS) has proven to be a promising tool for such purposes. Despite their widespread application, a number of challenges are still associated with the use of TRS,(More)
Random integration is one of the more straightforward methods to introduce a transgene into human embryonic stem (ES) cells. However, random integration may result in transgene silencing and altered cell phenotype due to insertional mutagenesis in undefined gene regions. Moreover, reliability of data may be compromised by differences in transgene(More)
Methyl CpG-binding protein 2 gene (MeCP2) mutations are implicated in Rett syndrome (RTT), one of the common causes of female mental retardation. Two MeCP2 isoforms have been reported: MeCP2_e2 (splicing of all four exons) and MeCP2_e1 (alternative splicing of exons 1, 3, and 4). Their relative expression levels vary among tissues, with MeCP2_e1 being more(More)
This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also(More)
AbstractA number of gene delivery systems are currently being developed for potential use in gene therapy. Here, we demonstrate the feasibility of 21ΔqHAC, a newly developed human artificial chromosome (HAC), as a gene delivery system. We first introduced a 21ΔqHAC carrying an EGFP reporter gene and a geneticin-resistant gene (EGFP-21ΔqHAC) into(More)
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly(More)
Collapsin response mediator protein-2 or Crmp-2 plays a critical role in the establishment of neuronal polarity. In this study, we present evidence that apart from its functions in neurodevelopment, Crmp-2 is also involved in pathways that regulate the proliferation of non-neuronal cells through its phosphorylation by regulatory proteins. We show that(More)