Can Ali Yucesoy

Learn More
The specific purpose of the present study was to show that extramuscular myofascial force transmission exclusively has substantial effects on muscular mechanics. Muscle forces exerted at proximal and distal tendons of the rat extensor digitorium longus (EDL) were measured simultaneously, in two conditions (1) with intact extramuscular connections (2) after(More)
In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support an assessment of the interaction between the intracellular(More)
The effects of inter- and extramuscular myofascial force transmission on muscle length force characteristics were studied in rat. Connective tissues at the bellies of the experimental synergistic muscles of the anterior crural compartment were left intact. Extensor digitorium longus (EDL) muscle was lengthened distally whereas tibialis anterior (TA) and(More)
Static displacements in Pacinian corpuscles (PCs) were measured using video microscopy. Mechanical stimuli of 10-40 microm steps were applied to the PC capsule surfaces using cylindrical contacts with different diameters. Displacements parallel to the stimulation axis were measured at various locations in the focal plane of the optical setup. In contrast to(More)
BACKGROUND Effects of extramuscular connective tissues on muscle force (experimentally measured) and lengths of sarcomeres (modeled) were investigated in rat. It was hypothesized that changes of muscle-relative position affect the distribution of lengths of sarcomeres within muscle fibers. METHOD OF APPROACH The position of extensor digitorum longus(More)
Certain recent studies showed that extra-muscular myofascial force transmission affects the length-force characteristics of rat extensor digitorium longus (EDL) muscle significantly after distal or proximal lengthening. This suggested that the relative position of a muscle with respect to its surrounding connective tissues is a co-determinant of muscle(More)
BACKGROUND Myofascial force transmission occurs between muscles (intermuscular myofascial force transmission) and from muscles to surrounding nonmuscular structures such as neurovascular tracts and bone (extramuscular myofascial force transmission). The purpose was to investigate the mechanical role of the epimuscular connections (the integral system of(More)
The specific aim of this paper is to review the effects of epimuscular myofascial force transmission on muscular mechanics and present some new results on finite element modeling of non-isolated aponeurotomized muscle in order to discuss the dependency of mechanics of spastic muscle, as well as surgery for restoration of function on such force transmission.(More)
Water, collagen and mineral are the three major components of bone. The structural organization of water and its functions within the bone were investigated using the environmental scanning electron microscope and by analyzing dimensional changes that occur when fresh equine osteonal bone is dehydrated and then rehydrated. These changes are attributed(More)
Kinesio taping (KT) is widely used in the treatment of sports injuries and various neuro-musculoskeletal disorders. However, it is considered as selectively effective on targeted tissues and its mechanical effects have not been quantified objectively. Ascribed to continuity of muscular and connective tissues, mechanical loading imposed can have widespread(More)