Camillo La Mesa

Learn More
We report on mixing an anionic diacyl phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphate monosodium salt, DPPA) with either monoacyl and diacyl arginine-based surfactants. These mixtures are part of the rich family of pseudo-triple-chain and pseudo-tetra-chain catanionic mixtures, respectively. Vesicle size and zeta-potential were measured at several(More)
Mixing aqueous sodium dodecylsulfate with cetyltrimethylammonium bromide solutions in mole ratios close to (1.7/1.0) allows the formation of cat-anionic vesicles with an excess of negative charges on the outer surface. The vesicular dispersions are mixed with lysozyme, and interact electrostatically with the positive charges on the protein, forming(More)
Aqueous mixtures containing a homopolymer, poly(vinylpyrrolidone) (PVP), or a hydrophobically modified graft copolymer, HM-pullulan, (PULAU9, where 9 stands for the nominal substitution degree), and different Gemini surfactants have been investigated at 25.0 degrees C. A wide variety of experimental conditions were addressed by changing the amount of(More)
The phase behavior and some physicochemical properties of homopolymers (HP) and hydrophobically modified (HMP) polymers, as well as of polyelectrolytes (PE) and proteins (PR), in the presence of aqueous surfactants, or their mixtures, are discussed. Mixing the above components gives rise to the formation of organized phases, whose properties are controlled(More)
A wide number of supra-molecular association modes are observed in mixtures containing water and bile salts, BS, (with, eventually, other components). Molecular or micellar solutions transform into hydrated solids, fibres, lyotropic liquid crystals and/or gels by raising the concentration, the temperature, adding electrolytes, surfactants, lipids and(More)
Synthetic vesicles were prepared by mixing anionic and cationic surfactants, aqueous sodium dodecylsulfate with didodecyltrimethylammonium or cetyltrimethylammonium bromide. The overall surfactant content and the (anionic/cationic) mole ratios allow one to obtain negatively charged vesicles. In the phase diagram, the vesicular region is located between a(More)
In 1/1 mass ratio mixtures made of single strand DNA and single-walled carbon nanotubes lyotropic nematic phases are formed. The process is assisted by segregative phase separation procedures. The liquid crystalline order occurring therein was confirmed by optical polarizing microscopy and zero-shear rheology. The resulting nematic droplets were dispersed(More)
Single walled carbon nanotubes have singular physicochemical properties making them attractive in a wide range of applications. Studies on carbon nanotubes and biological macromolecules exist in literature. However, ad hoc investigations are helpful to better understand the interaction mechanisms. We report on a system consisting of single walled carbon(More)
The synthesis and characterisation of new surfactants with peculiar physical-chemical properties are amongst the most promising and expanding issues in pharmacological colloid science. The most used vesicular carriers are liposomes prepared from a wide variety of natural and synthetic phospholipids, but several ionic and non-ionic amphiphiles have been used(More)
The phase behavior of an ad hoc synthesized surfactant, sodium 8-hexadecylsulfate (8-SHS), and its mixtures with didecyldimethylammonium bromide (DiDAB) in water is reported. We dealt with dilute concentration regimes, at a total surfactant content of <30 mmol kg(-1) where vesicular aggregates may be formed. The high synergistic behavior of such catanionic(More)