Camille Aron

Learn More
We propose and study the use of photon-mediated interactions for the generation of long-range steady-state entanglement between N atoms. Through the judicious use of coherent drives and the placement of the atoms in a network of cavity QED systems, a balance between their unitary and dissipative dynamics can be precisely engineered to stabilize a long-range(More)
We study how strongly correlated electrons on a dissipative lattice evolve out of equilibrium under a constant electric field, focusing on the extent of the linear regime and hysteretic nonlinear effects at higher fields. We access the nonequilibrium steady states, nonperturbatively in both the field and the electronic interactions, by means of a(More)
We investigate the dramatic switch of resistance in ordered correlated insulators when they are driven out of equilibrium by a strong voltage bias. Microscopic calculations on a driven-dissipative lattice of interacting electrons explain the main experimental features of resistive switching (RS), such as the hysteretic I-V curves and the formation of hot(More)
We study the driven dynamics of quantum coarsening. We analyze models of M-component rotors coupled to two electronic reservoirs at different chemical potential that generate a current threading through the system. In the large M limit, we derive the dynamical phase diagram as a function of temperature, strength of quantum fluctuations, voltage, and(More)
We study the coarsening dynamics of the three-dimensional random field Ising model using Monte Carlo numerical simulations. We test the dynamic scaling and super-scaling properties of global and local two-time observables. We treat in parallel the three-dimensional Edward–Anderson spin glass and we recall results on Lennard-Jones mixtures and colloidal(More)
We study the steady-state dynamics of the Hubbard model driven out of equilibrium by a constant electric field and coupled to a dissipative heat bath. For a very strong field, we find a dimensional reduction: the system behaves as an equilibrium Hubbard model in lower dimensions. We derive steady-state equations for the dynamical mean-field theory in the(More)
We propose a scheme for driving a dimer of spatially separated qubits into a maximally entangled nonequilibrium steady state. A photon-mediated retarded interaction between the qubits is realized by coupling them to two tunnel-coupled leaky cavities where each cavity is driven by a coherent microwave tone. The proposed cooling mechanism relies on striking(More)
Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered(More)
  • 1