Camilla Schwind

Learn More
In this paper, we present a new method for computing extensions and for deriving formulae from a default theory. It is based on the semantic tableaux method and works for default theories with a finite set of defaults that are formulated over a decidable subset of first-order logic. We prove that all extensions (if any) of a default theory can be produced(More)
In this paper we develop a logical framework for specifying and verifying systems of communicating agents and interaction protocols. The framework is based on Dynamic Linear Time Temporal Logic (DLTL), which extends LTL by strengthening the until operator by indexing it with the regular programs of dynamic logic. The framework provides a simple(More)
In this paper we address the problem of specifying and verifying systems of communicating agents in a Dynamic Linear Time Temporal Logic (DLTL). This logic provides a simple formalization of the communicative actions in terms of their effects and preconditions. Furthermore it allows to specify interaction protocols by means of temporal constraints(More)
In this paper we present a cut-free sequent calculus, called SeqS, for some standard conditional logics. The calculus uses labels and transition formulas and can be used to prove decidability and space complexity bounds for the respective logics. We also show that these calculi can be the base for uniform proof systems. Moreover, we present CondLean, a(More)