Camilla Luni

Learn More
Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell(More)
BACKGROUND Robustness is a recognized feature of biological systems that evolved as a defence to environmental variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while generally potent(More)
Insulin resistance is a primary defect underlying the development of type II diabetes. In healthy conditions, insulin stimulates glucose uptake from the blood stream, but in diseased conditions the normal metabolic response is impaired. Identifying specific drug targets to restore insulin sensitivity at the cellular level and developing an effective(More)
Pancreatic β-cell dysfunction is a diagnostic criterion of Type 2 diabetes and includes defects in glucose transport and insulin secretion. In healthy individuals, β-cells maintain plasma glucose concentrations within a narrow range in concert with insulin action among multiple tissues. Postprandial elevations in blood glucose facilitate glucose uptake into(More)
INTRODUCTION Epidemiological studies suggest that statins may promote the development or exacerbation of diabetes, but whether this occurs through inhibition of insulin secretion is unclear. This lack of understanding is partly due to the cellular models used to explore this phenomenon (cell lines or pooled islets), which are non-physiologic and have(More)
This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100-300 mul). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the(More)
Like all articles in BMC journals, this peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Background
  • 1