Camila Lopez-Anido

Learn More
Successful myelination of the peripheral nervous system depends upon induction of major protein components of myelin, such as peripheral myelin protein 22 (PMP22). Myelin stability is also sensitive to levels of PMP22, as a 1.4 Mb duplication on human chromosome 17, resulting in three copies of PMP22, is the most common cause of the peripheral neuropathy(More)
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific(More)
As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per(More)
Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo(More)
Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A).(More)
  • 1