Cameron L C Smith

Learn More
Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface(More)
In studies of the microflora associated with fuel storage tanks, a Fusarium species was isolated from No. 1 diesel fuel. The culture was identified as F. moniliforme Sheldon. Attempts were made to cultivate this organism with seven hydrocarbons of 99(+) mole per cent purity as the sole carbon source; growth of the fungal culture was supported only by(More)
We demonstrate highly efficient evanescent coupling via a silica loop-nanowire, to ultra-small (0.5 (lambda/n)(3) ), InAs/InP quantum dot photonic crystal cavities, specifically designed for single photon source applications. This coupling technique enables the tuning of both the Q-factor and the wavelength of the cavity mode independently, which is highly(More)
We demonstrate highly efficient evanescent coupling between a highly nonlinear chalcogenide glass two dimensional photonic crystal waveguide and a silica fiber nanowire. We achieve 98% insertion efficiency to the fundamental photonic crystal waveguide mode with a 3dB coupling bandwidth of 12nm, in good agreement with theory. This scheme provides a promising(More)
We demonstrate a direct, single measurement technique for characterizing the dispersion of a photonic crystal waveguide (PCWG) using a tapered fiber evanescent coupling method. A highly curved fiber taper is used to probe the Fabry-Pérot spectrum of a closed PCWG over a broad k-space range, and from this measurement the dispersive properties of the(More)
We demonstrate postprocessed microfluidic double-heterostructure cavities in silicon-based photonic crystal slab waveguides. The cavity structure is realized by selective fluid infiltration of air holes using a glass microtip, resulting in a local change of the average refractive index of the photonic crystal. The microcavities are probed by evanescent(More)
We demonstrate spectral filtering with state-of-the-art Bragg gratings in plasmonic V-groove waveguides fabricated by wafer scale processing based on nanoimprint lithography. Transmission spectra of the devices having 16 grating periods exhibit spectral rejection of the channel plasmon polaritons with 8.2 dB extinction ratio and -3 dB bandwidth of Δλ = 39.9(More)
We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter(More)
We demonstrate the spectral and spatial reconfigurability of photonic crystal double-heterostructure cavities in silicon by microfluidic infiltration of selected air holes. The lengths of the microfluidic cavities are changed by adjusting the region of infiltrated holes in steps of several microns. We systematically investigate the spectral signature of(More)
Quorum sensing (QS) is a communication mechanism exploited by a large variety of bacteria to coordinate gene expression at the population level. In Gram-negative bacteria, QS occurs via synthesis and detection of small chemical signals, most of which belong to the acyl-homoserine lactone class. In such a system, binding of an acyl-homoserine lactone signal(More)