Learn More
Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into(More)
Pregnancy-specific glycoproteins (PSGs) are a family of highly similar secreted proteins produced by the placenta. PSG homologs have been identified in primates and rodents. Members of the human and murine PSG family induce secretion of antiinflammatory cytokines in mononuclear phagocytes. For the purpose of cloning the receptor, we screened a RAW 264.7(More)
Pregnancy-specific glycoproteins (PSGs) are a family of secreted proteins produced by the placenta, which are believed to have a critical role in pregnancy success. Treatment of monocytes with three members of the human PSGs induces interleukin (IL)-10, IL-6, and transforming growth factor-beta(1) (TGF-beta(1)) secretion. To determine whether human and(More)
Previous studies demonstrated that genistein protects mice from radiation-induced bone marrow failure. To overcome genistein's extremely low water solubility, a nanoparticle suspension of genistein has been formulated for more rapid dissolution. In the current study, we evaluated the radioprotective effects of a nanoparticle formulation of genistein on(More)
We recently demonstrated that a novel cell stress response gene REDD1 protects human fetal osteoblast cell line (hFOB) cells from γ-radiation-induced premature senescence. Here we show that levels of endogenous REDD1 are very low in human hematopoietic progenitor CD34+ cells regardless of radiation, but highly expressed in differentiated hematopoietic cells(More)
We recently demonstrated that natural delta-tocotrienol (DT3) significantly enhanced survival in total-body irradiated (TBI) mice, and protected mouse bone marrow cells from radiation-induced damage through Erk activation-associated mTOR survival pathways. Here, we further evaluated the effects and mechanisms of DT3 on survival of radiation-induced mouse(More)
The function currently attributed to tetraspanins is to organize molecular complexes in the plasma membrane by using multiple cis-interactions. Additionally, the tetraspanin CD9 may be a receptor that binds the soluble ligand PSG17, a member of the immunoglobulin superfamily (IgSF)/CEA subfamily. However, previous data are also consistent with the PSG17(More)
We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL)-1 family of cytokines,(More)
Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are(More)
We reported that microRNA-30c (miR-30c) plays a key role in radiation-induced human cell damage through an apoptotic pathway. Herein we further evaluated radiation-induced miR-30 expression and mechanisms of delta-tocotrienol (DT3), a radiation countermeasure candidate, for regulating miR-30 in a mouse model and human hematopoietic CD34+ cells. CD2F1 mice(More)