Calvin R. Maurer

Learn More
Guidance systems designed for neurosurgery, hip surgery, and spine surgery, and for approaches to other anatomy that is relatively rigid can use rigid-body transformations to accomplish image registration. These systems often rely on point-based registration to determine the transformation, and many such systems use attached fiducial markers to establish(More)
In Drosophila, approximately 50 classes of olfactory receptor neurons (ORNs) send axons to 50 corresponding glomeruli in the antennal lobe. Uniglomerular projection neurons (PNs) relay olfactory information to the mushroom body (MB) and lateral horn (LH). Here, we combine single-cell labeling and image registration to create high-resolution, quantitative(More)
A sequential algorithm is presented for computing the exact Euclidean distance transform (DT) of a k-dimensional binary image in time linear in the total number of voxelsN. The algorithm, which is based on dimensionality reduction and partial Voronoi diagram construction, can be used for computing the DT for a wide class of distance functions, including the(More)
This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection:(More)
In this paper, we describe an extrinsic-point-based, interactive image-guided neurosurgical system designed at Vanderbilt University, Nashville, TN, as part of a collaborative effort among the Departments of Neurological Surgery, Computer Science, and Biomedical Engineering. Multimodal image-to-image (II) and image-to-physical (IP) registration is(More)
In this paper, we extend a previously reported intensity-based nonrigid registration algorithm by using a novel regularization term to constrain the deformation. Global motion is modeled by a rigid transformation while local motion is described by a free-form deformation based on B-splines. An information theoretic measure, normalized mutual information, is(More)
It is well known in the pattern recognition community that the accuracy of classifications obtained by combining decisions made by independent classifiers can be substantially higher than the accuracy of the individual classifiers. We have previously shown this to be true for atlas-based segmentation of biomedical images. The conventional method for(More)
Mutual information (MI) has emerged in recent years as an effective similarity measure for comparing images. One drawback of MI, however, is that it is calculated on a pixel by pixel basis, meaning that it takes into account only the relationships between corresponding individual pixels and not those of each pixel’s respective neighborhood. As a result,(More)
One major problem with nonrigid image registration techniques is their high computational cost. Because of this, these methods have found limited application to clinical situations where fast execution is required, e.g., intraoperative imaging. This paper presents a parallel implementation of a nonrigid image registration algorithm. It takes advantage of(More)
Introduction Stereotactic radiosurgery has been used to treat cranial lesions for more than a decade. This type of image-guided procedure matches preoperative image data and the physical space occupied by the patient using the fact that the brain inside a closed cranium is approximately rigid. We are interested in treating extracranial lesions such as(More)