Calvin McLaughlin

Learn More
In this study, we examined yeast proteins by two-dimensional (2D) gel electrophoresis and gathered quantitative information from about 1,400 spots. We found that there is an enormous range of protein abundance and, for identified spots, a good correlation between protein abundance, mRNA abundance, and codon bias. For each molecule of well-translated mRNA,(More)
A single, recessive mutation in a nuclear gene confers a temperature-sensitive growth response in a mutant of Saccharomyces cerevisiae, ts(-) 136. The mutant grows normally at 23 C, but exhibits a rapid and preferential inhibition of ribonucleic acid (RNA) accumulation after a shift to 36 C, demonstrating a defect in stable RNA production. Cultures of the(More)
Twenty-three temperature-sensitive mutants of Saccharomyces cerevisiae, all of which undergo a rapid cessation of net RNA accumulation following a shift from the permissive (23°) to the restrictive temperature (36°), have been characterized. Genetic studies demonstrate that these mutants belong to ten different complementation groups and that, in most(More)
The levels of H2A and H2B mRNAs as a function of cell-cycle stage were determined by hybridization methods. The analysis was extended to H3 and H4 mRNAs by in vitro translation. Cells were partitioned into cell-cycle stages either by centrifugal elutriation or by G1 synchronization with the yeast mating pheromone, alpha factor. The data lead to the(More)
Two-dimensional (2-D) gel electrophoresis can now be coupled with protein identification techniques and genome sequence information for direct detection, identification, and characterization of large numbers of proteins from microbial organisms. 2-D electrophoresis, and new protein identification techniques such as amino acid composition, are proteome(More)
Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either(More)
MOTIVATION Computer-assisted methods are essential for the analysis of biosequences. Gene activity is regulated in part by the binding of regulatory molecules (transcription factors) to combinations of short motifs. The goal of our analysis is the development of algorithms to identify regulatory motifs and to predict the activity of combinations of those(More)
Centrifugal elutriation was used to separate cells of Saccharomyces cerevisiae in balanced exponential growth according to position in the cell cycle. Macromolecular synthesis was examined. DNA synthesis was found to be periodic, but RNA and protein synthesis showed an exponential increase in rate. Two-dimensional electrophoresis was used to determine the(More)
The gene YEF-3 encoding the elongation factor for protein synthesis in Saccharomyces cerevisiae is an essential gene as shown by one-step gene disruption and is located on chromosome XII as determined by orthogonal field alternation gel electrophoresis. The nucleotide sequence of the gene was determined from a sequential series of subclones generated from(More)