Callain Y Kim

Learn More
Kv1.1 channels are expressed in many regions of the brain and spinal cord [Monaghan, M. M.; Trimmer, J. S.; Rhodes, K. J. J. Neurosci.2001, 21, 5973; Rasband, M. N.; Trimmer, J. S. J. Comp. Neurol.2001, 429, 166; Trimmer, J. S.; Rhodes, K. J. Ann. Rev. Physiol.2004, 66, 477]. When expressed alone, they produce a delayed rectifier slowly inactivating type(More)
Efforts to identify new selective and potent norepinephrine reuptake inhibitors (NRIs) for multiple indications by structural modification of the previous 3-(arylamino)-3-phenylpropan-2-olamine scaffold led to the discovery of a novel series of 1-(indolin-1-yl)-1-phenyl-3-propan-2-olamines (9). Investigation of the structure-activity relationships revealed(More)
Sequential structural modifications of the aryloxypropanamine template (e.g., atomoxetine, 2) led to a novel series of 1-(3-amino-2-hydroxy-1-phenyl propyl)-1,3-dihydro-2H-benzimidazol-2-ones as selective norepinephrine reuptake inhibitors (NRIs). In general, this series of compounds potently blocked the human norepinephrine transporter (hNET) while(More)
A novel series of monoamine reuptake inhibitors, the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols, have been discovered by combining virtual and focused screening efforts with design techniques. Synthesis of the two diastereomeric isomers of the molecule followed by chiral resolution of each enantiomer revealed the (2R,3S)-isomer to be a potent(More)
In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the(More)
Pyrrole[2,3-d]azepines have been identified as potent agonists of the farnesoid X receptor (FXR). Based on the planar X-ray crystal structure of WAY-362450 1 in the ligand binding domain and molecular modeling studies, non-planar reduced compounds were designed which led to agonists that exhibit high aqueous solubility and retain moderate in vitro potency.
The SAR of a series of 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols as monoamine reuptake inhibitors, with a goal to improve both potency toward inhibiting the norepinephrine transporter and selectivity over the serotonin transporter, is reported. The effect of specific substitution on both the 3-phenyl group and the indole moiety were explored. This(More)
  • 1