Learn More
CuO nanowires and nanorods were synthesized through a novel controllable solution-phase hydrothermal method using a nonionic surfactant polyethylene glycol (PEG) as the structure-directing template. The lengths of obtained 1D CuO nanostructures could be successfully controlled through choosing different molecular weights of PEG. The phase structures and(More)
LaPO(4) and CePO(4) nanorods/nanowires with controlled aspect ratios have been successfully synthesized using a hydrothermal microemulsion method under mild conditions. It has been shown that the obtained LaPO(4) has a monoclinic structure, while CePO(4) exists in the hexagonal structure. Uniform nanorods/nanowires with diameters of 20-60 nm and lengths(More)
Dy(OH)3 nanotubes with high aspect ratios of up to about 50 were synthesized in the presence of poly(ethylene glycol) via a hydrothermal method. Poly(ethylene glycol), as a nonionic surfactant, plays an important role in the formation of morphologies. Subsequent thermal treatment of Dy(OH)3 nanotube precursors at 450 degrees C for 6 h led to Dy2O3(More)
ZnO nanostructures with different morphologies were synthesized by condensing the Zn(OH)4(2-) precursors under hydrothermal conditions in the presence of a surfactant, cetyltrimethylammonium bromide (CTAB). Shape and size control of ZnO nanostructures was achieved by relatively simple variations of molar ratio of CTAB to Zn(OH)4(2-). With a higher molar(More)
Multilayer ultrathin films were fabricated from partially doped polyaniline (PAN) and a Keggin-type polyoxometalate [alpha-SiW(12)O(40)](4-) (alpha-SiW(12)) in aqueous solution via the layer-by-layer self-assembly technique and characterized by UV-vis, FTIR, and X-ray photoelectron spectra (XPS), ellipsometry, scanning electron microscopy (SEM), and atomic(More)
  • 1