Caitlin M Quinn

  • Citations Per Year
Learn More
We demonstrate the determination of quantitative rates of molecular reorientation in the solid state with rotating frame (R(1ρ)) relaxation measurements. Reorientation of the carbon chemical shift anisotropy (CSA) tensor was used to probe site-specific conformational exchange in a model system, d(6)-dimethyl sulfone (d(6)-DMS). The CSA as a probe of(More)
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by(More)
The recent breakthroughs in NMR probe technologies resulted in the development of MAS NMR probes with rotation frequencies exceeding 100 kHz. Herein, we explore dramatic increases in sensitivity and resolution observed at MAS frequencies of 110-111 kHz in a novel 0.7 mm HCND probe that enable structural analysis of fully protonated biological systems.(More)
A new application of solid-state rotating frame (R(1rho)) relaxation experiments to observe conformational dynamics is presented. Studies on a model compound, dimethyl sulfone (DMS), show that R(1rho) relaxation due to reorientation of a chemical shift anisotropy (CSA) tensor undergoing chemical exchange can be used to monitor slow-to-intermediate timescale(More)
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however,(More)
NMR chemical shifts are exquisitely sensitive probes for conformation and dynamics in molecules and supramolecular assemblies. Although isotropic chemical shifts are easily measured with high accuracy and precision in conventional NMR experiments, they remain challenging to calculate quantum mechanically, particularly in inherently dynamic biological(More)
The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large(More)
  • 1