Learn More
Quorum sensing (QS) is a cell-to-cell communication mechanism through which microbial cells communicate and regulate their wide variety of biological activities. N-acyl homoserine lactones (AHLs) are considered to be the most important QS signaling molecules produced by several Gram-negative bacteria. The present study aimed to screen the AHLs-producing(More)
In Mg-Li-Al alloys, θ-phase MgAlLi(2) is a strengthening and metastable phase which is liable to be transformed to the equilibrium phase AlLi on overaging. While the structural details of the θ-phase MgAlLi(2) and the microscopic transformation are still unknown. In this paper, the structure of MgAlLi(2) unit cell was determined through X-ray powder(More)
Effects of alloying elements in popular steels on the oxidation and dissolution corrosion of the surface of γ-Fe(111) have been investigated by performing density functional theory calculations within the local density approximation. First, the segregation of alloying atoms as well as preferential adsorption sites for oxygen and water were carefully(More)
Bacteria use quorum sensing (QS) systems to communicate with each other and regulate microbial group behavior, such as the secretion of virulence factors, including biofilm formation. In order to explore safe, edible agents, the potential of star anise (SA) as an anti-QS and antibiofilm agent and its possible application in milk safety were investigated.(More)
Using density-functional calculations, we studied the interaction between interstitial impurities (N, C) and γ-Fe(111) surfaces doped, or not, with Cr, as well as the effect of Cr doping on the dissolution corrosion resistance of the γ-Fe(111) surface. The elementary processes studied afforded microscopic insights into the formation of a Cr-depleted zone, a(More)
This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni) at the γ-Fe(111)/Cr 2 N(0001) interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111)/Cr 2 N(0001) interface and enhanced interfacial adhesive strength. By contrast, Ni(More)
Thermophilic Geobacillus thermoglucosidasius could ferment a wide range of substrates with low nutrient requirements for growth. Here, the first released the complete genome sequence of G. thermoglucosidasius DSM2542 may facilitate the design of rational strategies for further strain improvements and provide information for exploring industrially(More)
A combined experimental and first-principle study on the oxidation mechanism of super austenitic stainless steel S32654 at 900 °C for a short time period (1, 3, and 5 h) in air is presented. The samples exhibit excellent oxidation resistance because of the initial and gradual formation of the denser Fe- and Cr-rich layer with increasing oxidation time.(More)
Fish skin has both positive and negative effects on the shelf-life of the fish. This study aimed to investigate the spoilage process of the skin and flesh of refrigerated farmed turbot (Scophthalmus maximus) with vacuum packaging. Microbial community changes were analyzed by combining culture-dependent and culture-independent methods. The results indicated(More)
Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of(More)
  • 1