Learn More
Dispersed particle gel (DPG) has been first successfully prepared using cross-linked gel systems through a simple high speed shearing method with the aid of a colloid mill at room temperature. The gel microstructure and particle size were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), and dynamic light(More)
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning(More)
An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for(More)
Using molecular dynamics simulations, we reveal ion rectification in charged nanocones with exit diameters of 1-2 nm. The simulations exhibit an opposite rectification current direction than experiments performed in conical channels with exit diameters larger than 5 nm. This can be understood by the fact that in ultranarrow charged cones screening ions are(More)
Tuning the self-assembly of building blocks to obtain a kaleidoscope of nanostructures is very important and challenging for the preparation of advanced nanomaterials. Amphiphiles confined within carbon nanotube (CNT) arrays can self-assemble into complex structures that maintain the "bilayer" characteristic of a lamellar phase, we call them "lamellar phase(More)
Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that(More)
Micelles formed by the long-chain piperidinium ionic liquids (ILs) N-alkyl-N-methylpiperidinium bromide of general formula CnPDB (n = 12, 14, 16) in ethylammonium nitrate (EAN) were investigated through surface tension and dissipative particle dynamics (DPD) simulations. Through surface tension measurements, the critical micelle concentration (cmc), the(More)
The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the(More)
Through the descriptive and rheological characterization of worm-like micelles formed by N-hexadecyl-N-methylpyrrolidinium bromide and sodium laurate, the formation and properties of the worm-like micelles were affected by the concentrations of sodium laurate and temperature. Additionally, cryogenic transmission electron microscopy images further validated(More)
  • 1