Learn More
Intermittent hypoxia (IH) is thought to be responsible for many of the long-term cardiovascular consequences associated with obstructive sleep apnoea (OSA). Experimental human models of IH can aid in investigating the pathophysiology of these cardiovascular complications. The purpose of this study was to determine the effects of IH on the cardiovascular and(More)
RATIONALE Periodic occlusion of the upper airway in patients with obstructive sleep apnea leads to chronic intermittent hypoxia, which increases the acute hypoxic ventilatory response (AHVR). Animal studies suggest that oxidative stress may modulate AHVR by increasing carotid body sensitivity to hypoxia. This has not been shown in humans. OBJECTIVES To(More)
Erythropoietin (EPO) and soluble EPO receptors (sEPOR) have been proposed to play a central role in the ventilatory acclimatisation to continuous hypoxia in mice. In this study, we demonstrated for the first time in humans (n = 9) that sEPOR is downregulated upon daytime exposure to 4 days of intermittent hypoxia (IH; 6 h·day⁻¹, cycles of 2 min of hypoxia(More)
  • 1