Caibin Zeng

  • Citations Per Year
Learn More
Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also(More)
In this paper, we concentrate on the synchronization problem of fractional-order complex networks with general linear dynamics under connected topology. By introducing a pseudo-state transformation, the problem is converted into an equivalent simultaneous stabilization problem of independent subsystems, which is characterized by nonzero eigenvalues of the(More)
A class of stochastic differential equations given by dx(t) = f(x(t))dt + g(x(t))dW(t),  x(t 0) = x 0,  t 0 ≤ t ≤ T < +∞, are investigated. Upon making some suitable assumptions, the existence and uniqueness of solution for the equations are obtained. Moreover, the existence and uniqueness of solution for stochastic Lorenz system, which is illustrated by(More)
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB (H) (t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the(More)
Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical(More)
  • 1