Learn More
A modest ethylene climacteric accompanies flower senescence in Mirabilis jalapa L., and exogenous ethylene accelerates the process. However, inhibitors of ethylene action and synthesis have little effect on the life-span of these ephemeral flowers. Treatment with alpha-amanitin, an inhibitor of DNA-dependent RNA synthesis, substantially delays the onset of(More)
A gene encoding a RING zinc finger ankyrin repeat protein (MjXB3), a putative E3 ubiquitin ligase, is highly expressed in petals of senescing four o'clock (Mirabilis jalapa) flowers, increasing >40,000-fold during the onset of visible senescence. The gene has homologues in many other species, and the Petunia homologue is strongly up-regulated in senescing(More)
Agrobacterium-mediated infection of petunia (Petunia hybrida) plants with tobacco rattle virus (TRV) bearing fragments of Petunia genes resulted in systemic infection and virus-induced gene silencing (VIGS) of the homologous host genes. Infection with TRV containing a phytoene desaturase (PDS) fragment resulted in reduced abundance of PDS transcripts and(More)
The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively.(More)
Virus-induced gene silencing (VIGS) was used as a tool for functional analysis of cell wall-associated genes that have been suggested to be involved in leaf abscission. Tobacco rattle virus is an effective vector for VIGS in tomato (Lycopersicon esculentum). Silencing was more efficient when the plants were grown at 22 degrees C than when they were grown at(More)
Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of(More)
The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and(More)
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip(More)
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during flower senescence. Transcription of PhFBH4 is induced by(More)
Although gibberellins (GAs) have been shown to induce development of the physiological disorder blossom-end rot (BER) in tomato fruit (Solanum lycopersicum), the mechanisms involved remain largely unexplored. BER is believed to result from calcium (Ca) deficiency, but the relationship between Ca content and BER incidence is not strong. Our objectives were(More)