• Publications
  • Influence
Periodic frameworks and flexibility
  • C. Borcea, I. Streinu
  • Mathematics
  • Proceedings of the Royal Society A: Mathematical…
  • 8 September 2010
We formulate a concise deformation theory for periodic bar-and-joint frameworks in Rd and illustrate our algebraic–geometric approach on frameworks related to various crystalline structures.Expand
  • 80
  • 8
  • PDF
On the number of embeddings of minimally rigid graphs
TLDR
We study first the number of distinct planar embeddings of rigid graphs with n vertices. Expand
  • 46
  • 6
  • PDF
Diffeomorphisms of a K3 surface
  • 39
  • 3
Minimally rigid periodic graphs
  • 37
  • 2
Moduli for Kodaira surfaces
© Foundation Compositio Mathematica, 1984, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditionsExpand
  • 25
  • 2
  • PDF
Periodic body-and-bar frameworks
TLDR
We give a Maxwell-Laman characterization for generic minimally rigid periodic body-and-bar frameworks in terms of their quotient graphs. Expand
  • 12
  • 1
  • PDF
Line Transversals to Disjoint Balls
TLDR
We prove that the set of directions of lines intersecting three disjoint balls in ℝ3 in a given order is a strictly convex subset of $\mathbb {S}^{2}$ . Expand
  • 6
  • 1