• Publications
  • Influence
A Massive Pulsar in a Compact Relativistic Binary
Introduction Neutron stars with masses above 1.8 solar masses (M☉), possess extreme gravitational fields, which may give rise to phenomena outside general relativity. These strong-field deviations
A direct localization of a fast radio burst and its host
The authors' observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy, and the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source.
The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102
The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10‑4) of an FRB with an optical and
The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales
The millisecond-duration radio flashes known as fast radio bursts (FRBs) represent an enigmatic astrophysical phenomenon. Recently, the sub-arcsecond localization (∼100 mas precision) of FRB 121102
A strong magnetic field around the supermassive black hole at the centre of the Galaxy
Multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre are reported and it is shown that the pulsar’s unusually large Faraday rotation indicates that there is a dynamically important magnetic field near the black hole.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102
Observations of FRB 121102 show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure, demonstrating that the fast radio burst source is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin.
The repeating Fast Radio Burst FRB 121102: Multi-wavelength observations and additional bursts
We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green
A repeating fast radio burst source localized to a nearby spiral galaxy
Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy, suggesting that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
The host galaxy of a fast radio burst
The discovery of a fast radio burst is reported and the identification of a fading radio transient lasting ~6 days after the event, which is used to identify the host galaxy and measure the galaxy’s redshift, which provides a direct measurement of the cosmic density of ionized baryons in the intergalactic medium.