Learn More
Metaphase chromatids are believed to consist of loops of chromatin anchored to a central scaffold, of which a major component is the decatenatory enzyme DNA topoisomerase II. Silver impregnation selectively stains an axial element of metaphase and anaphase chromatids; but we find that in earlier stages of mitosis, silver staining reveals an initially(More)
The enzyme DNA topoisomerase II, which removes the catenations formed between the DNA molecules of sister chromatids during replication and is a structural component of chromosome cores, is needed for chromosome condensation in yeast and in Xenopus extracts. Inhibitors of topoisomerase II arrest mammalian cells before mitosis in the G2 phase of the cell(More)
We have used synchronized HeLa cells to investigate the role of the nuclear membrane in preventing rereplication in a single cell cycle. Nuclei were prepared with intact nuclear membranes using streptolysin-O or digitonin and assayed for replication in Xenopus egg extracts. Intact G1 nuclei replicate semiconservatively, but intact G2 nuclei do not replicate(More)
Chromatid catenation is actively monitored in human cells, with progression from G(2) to mitosis being inhibited when chromatids are insufficiently decatenated. Mitotic delay was quantified in normal and checkpoint-deficient human cells during treatment with ICRF-193, a topoisomerase II catalytic inhibitor that prevents chromatid decatenation without(More)
Yeast temperature-sensitive mutants of DNA topoisomerase II are incapable of chromosome condensation and anaphase chromatid segregation. In mammalian cells, topoisomerase II inhibitors such as etoposide (VP-16-123) have similar effects. Unfortunately, conclusions drawn from work with mammalian cells have been limited by the fact that the standard inhibitors(More)
The mitotic state is associated with a generalized repression of transcription. We show that mitotic repression of RNA polymerase III transcription can be reproduced by using extracts of synchronized HeLa cells. We have used this system to investigate the molecular basis of transcriptional repression during mitosis. We find a specific decrease in the(More)
BACKGROUND Cell cycle checkpoints function to maintain genetic stability by providing additional time for repair of DNA damage and completion of events that are necessary for accurate cell division. Some checkpoints, such as the DNA damage G1 checkpoint, are dependent on p53, whereas other checkpoints, such as the decatenation G(2) checkpoint, are not.(More)
The alkaline Comet assay is a simple, sensitive method for measuring the extent of DNA strand breaks in individual cells. Several modifications to the original assay have been developed to increase its applications. One such modification allows the measurement of DNA cross-links by assessing the relative reduction in DNA migration induced by a(More)
There is increasing evidence to suggest that reduced folate status may be a causative factor in carcinogenesis, particularly colorectal carcinogenesis. Folate is essential for the synthesis of S-adenosylmethionine, the methyl donor required for all methylation reactions in the cell, including the methylation of DNA. Global DNA hypomethylation appears to be(More)
PURPOSE To compare the bacterial population of the ocular surface of normal and dry eye subjects using conventional culture and 16S rDNA PCR. METHODS Ninety-one subjects were classified as normal (n = 57) or dry eye (n = 34) by using tear break-up time, McMonnies survey, goblet cell density, and meibomian gland assessment. Conventional bacterial culture(More)