C. Shawn Green

Learn More
Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in(More)
The authors investigated the effect of action gaming on the spatial distribution of attention. The authors used the flanker compatibility effect to separately assess center and peripheral attentional resources in gamers versus nongamers. Gamers exhibited an enhancement in attentional resources compared with nongamers, not only in the periphery but also in(More)
Playing action video games enhances several different aspects of visual processing; however, the mechanisms underlying this improvement remain unclear. Here we show that playing action video games can alter fundamental characteristics of the visual system, such as the spatial resolution of visual processing across the visual field. To determine the spatial(More)
Human beings have an amazing capacity to learn new skills and adapt to new environments. However, several obstacles remain to be overcome in designing paradigms to broadly improve quality of life. Arguably, the most notable impediment to this goal is that learning tends to be quite specific to the trained regimen and does not transfer to even qualitatively(More)
Action video game play benefits performance in an array of sensory, perceptual, and attentional tasks that go well beyond the specifics of game play [1-9]. That a training regimen may induce improvements in so many different skills is notable because the majority of studies on training-induced learning report improvements on the trained task but limited(More)
In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games(More)
Previous research suggests that action video game play improves attentional resources, allowing gamers to better allocate their attention across both space and time. In order to further characterize the plastic changes resulting from playing these video games, we administered the Attentional Network Test (ANT) to action game players and non-playing controls(More)
PURPOSE Adult brain plasticity, although possible, is often difficult to elicit. Training regimens in adults can produce specific improvements on the trained task without leading to general enhancements that would improve quality of life. This paper considers the case of playing action video games as a way to induce widespread enhancement in vision. (More)