C. S. Suchand Sangeeth

Learn More
Odd-even effects in molecular junctions with self-assembled monolayers (SAMs) of n-alkanethiolates have been rarely observed. It is challenging to pinpoint the origin of odd-even effects and address the following question: are the odd-even effects an interface effect, caused by the intrinsic properties of the SAMs, or a combination of both? This paper(More)
Defects in self-assembled monolayer (SAMs) based junctions cause the largest deviation between predicted and measured values of the tunnelling current. We report the remarkable, seemingly counterintuitive finding that shorter, less-ordered SAMs provide, unlike taller crystalline-like SAMs, higher quality tunnelling barriers on defective substrates, which(More)
The electrical characteristics of molecular tunnel junctions are normally determined by DC methods. Using these methods it is difficult to discriminate the contribution of each component of the junctions, e.g., the molecule-electrode contacts, protective layer (if present), or the SAM, to the electrical characteristics of the junctions. Here we show that(More)
Monolayer graphene is used as the bottom electrode to fabricate stable and high-quality self-assembled monolayer (SAM)-based tunnel junctions. The SAMs are formed on graphene via noncovalent bonds without altering the structure of the graphene. This work paves the way to new types of molecular electronic junctions based on 2D materials.
Layer-by-layer-stacked chemical vapour deposition (CVD) graphene films find applications as transparent and conductive electrodes in solar cells, organic light-emitting diodes and touch panels. Common to lamellar-type systems with anisotropic electron delocalization, the plane-to-plane (vertical) conductivity in such systems is several orders lower than its(More)
We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption(More)
It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of(More)
Monolayer graphene is used by C. A. Nijhuis and co-workers as the bottom electrode to fabricate stable and high-quality tunnel junctions based on self-assembled monolayers (SAMs), as described on page 631. The SAMs are formed on graphene via non-covalent interactions without altering the structure of the graphene. This work paves the way to new types of(More)
The dielectric response and electrical properties of junctions based on self-assembled monolayers (SAMs) of the form S(CH2)11X can be controlled by changing the polarizability of X (here X = H, F, Cl, Br, or I). A 1000-fold increase in the tunneling rate and a four-fold increase of the dielectric constant (ε r ) with increasing polarizability of X are found.
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of(More)