Learn More
We describe a family of highly conserved, Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences, 14 of which have been identified in Escherichia coli and Salmonella typhimurium and a further three in other enterobacterial species (Yersinia pseudotuberculosis, Klebsiella pneumoniae and Vibrio cholerae). ERIC sequences are 126 bp long and appear to(More)
H-NS is an abundant structural component of bacterial chromatin and influences many cellular processes, including recombination, transposition, and transcription. We have studied the mechanism of action of H-NS at the osmotically regulated proU promoter. The interaction of H-NS with a curved DNA element located downstream of the proU promoter is required(More)
The proU loci of Salmonella typhimurium and Escherichia coli encode high-affinity glycine betaine transport systems which play an important role in survival under osmotic stress. Transcription of the proU locus is tightly regulated by osmolarity and this regulation appears to be mediated by osmotically induced changes in DNA supercoiling. In order to study(More)
Changes in DNA supercoiling in response to environmental signals such as osmolarity, temperature, or anaerobicity appear to play an underlying role in the regulation of gene expression in bacteria. Extensive genetic analyses have implicated the osmZ gene in this regulatory process: osmZ mutations are highly pleiotropic and alter the topology of cellular(More)
There has been a recent revival of interest in one of the most abundant Escherichia coli proteins, H1 (also called H-NS). This protein was first identified many years ago as a major component of the bacterial nucleoid, and has been characterized biochemically by several groups. However, no clear function for the protein emerged from these studies. Our(More)
The H-NS (H1) protein is a major component of bacterial chromatin. Mutations in the hns (osmZ) gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes in an allele-specific manner. H-NS expression was found not to vary with growth phase or growth medium osmolarity. Additionally, 10 independent hns mutations were isolated(More)
Transcription from many bacterial promoters is sensitive to the level of DNA supercoiling. We have investigated the mechanism by which environmentally induced changes in DNA supercoiling might regulate transcription. For the proU promoter of Salmonella typhimurium, osmotically induced changes in DNA topology appear to play a primary regulatory role. Changes(More)
We have constructed a novel promoter probe plasmid pSB40, containing a unique lac-alpha-tetracycline marker gene tandem, which allows for both positive and negative selection of active promoters. Promoters cloned in pSB40 can be readily mobilized as EcoRI cassettes. Using this vector we have performed a non-invasive analysis of the E. coli chromosome for(More)
  • 1