Learn More
The X-linked form of Charcot-Marie-Tooth disease (CMTX) is associated with mutations in the gene encoding connexin32 (Cx32), which is expressed in Schwann cells. We have compared the functional properties of 11 Cx32 mutations with those of the wild-type protein by testing their ability to form intercellular channels in the paired oocyte expression system.(More)
X-linked dominant Charcot-Marie-Tooth (CMTX) neuropathy has been mapped to the Xq13 region. Subsequently, several mutations that could account for CMTX have been detected in the coding part of the connexin32 (Cx32) gene, which is located within this region. In order to develop more specific diagnostic tools, we have begun a systematic screening of families(More)
Connexins form a multigene family of polytopic membrane proteins that, in vertebrates, are the constitutive subunits of intercellular channels and provide the structural basis for electrical coupling. The appearance of electrical coupling in the nervous system is developmentally regulated and restricted to distinct cell types. Electrical coupling between(More)
High prevalence of chronic orofacial pain in women and its relationship with ovarian states suggest that ovarian hormones may be involved in the control of orofacial nociception. Since the interaction between ovarian hormones and nociception seems more evident in the orofacial area than in many other parts of the body, a possible site specificity of an(More)
Charcot-Marie-Tooth disease comprises a group of genetically heterogenous disorders of the peripheral nervous system. The X-linked form of Charcot-Marie-Tooth (CMTX) is associated with mutations in the gene encoding the gap junction protein connexin32 (Cx32), which is expressed in Schwann cells. Immunocytochemical evidence suggests that Cx32 is localized to(More)
Mutations in the gene for connexin 32 are associated with a chromosome X-linked form of Charcot-Marie-Tooth disease. The prevalence of this form is probably underestimated. We screened 12 candidate families and found 7 missense mutations of which 4 are new. These mutations are located in intra- and extramembraneous parts of the protein. Some mutations are(More)
The purpose of this study was to examine the role of glycine in sensory processes in the spinal trigeminal nucleus oralis (Sp5O). We evaluated the effect of intravenous administration of strychnine, a glycine receptor antagonist, on the responses of Sp5O convergent neurons evoked by innocuous peripheral electrical and mechanical stimuli in(More)
  • 1