Learn More
Differential measurements of elliptic flow (v2) for Au+Au and Cu+Cu collisions at sqrt[sNN]=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v2 with eccentricity, system size, and transverse kinetic energy (KE T). For KE T identical with mT-m up to approximately 1 GeV the scaling is compatible with(More)
The production of e+ e- pairs for m(e+ e-)<0.3 GeV/c2 and 1<p(T)<5 GeV/c is measured in p+p and Au+Au collisions at square root(S(NN))=200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of the direct(More)
The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|<0.35 in p+p collisions at square root of s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2<pT<7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is(More)
We present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity (3)He+Au collisions at √(s(NN))=200  GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in (3)He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier(More)
Differential elliptic flow (v(2)) for phi mesons and (anti)deuterons (d)d is measured for Au+Au collisions at square root of sNN=200 GeV. The v(2) for phi mesons follows the trend of lighter pi+/- and K+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The(More)
For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, pT, up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < pT < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium,(More)
The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at √[s(NN)]=200 GeV. The p(T) of the photon is an excellent approximation to the initial p(T) of the jet and the ratio z(T)=p(T)(h)/p(T)(γ) is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the(More)
The momentum distribution of electrons from decays of heavy flavor (charm and bottom) for midrapidity absolute value of y < 0.35 in p + p collisions at square root of s = 200 GeV has been measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider over the transverse momentum range 0.3 < pT < 9 GeV/c. Two independent methods have been used(More)
We report the measurement of direct photons at midrapidity in Au+Au collisions at √(s(NN))=200 GeV. The direct photon signal was extracted for the transverse momentum range of 4 GeV/c<p(T)<22 GeV/c, using a statistical method to subtract decay photons from the inclusive photon sample. The direct photon nuclear modification factor R(AA) was calculated as a(More)
J/psi production in p+p collisions at square root s=200 GeV has been measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider over a rapidity range of -2.2<y<2.2 and a transverse momentum range of 0<pT<9 GeV/c. The size of the present data set allows a detailed measurement of both the pT and the rapidity distributions and is sufficient(More)