Learn More
The use of dichlorofluorescin (DCFH) as a measure of reactive oxygen species was studied in aqueous media. Hydrogen peroxide oxidized DCFH to fluorescent dichlorofluorescein (DCF), and the oxidation was amplified by the addition of ferrous iron. Hydrogen peroxide-induced DCF formation in the presence of ferrous iron was completely inhibited by deferoxamine(More)
Reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, and hydroxyl radicals are believed to be initiators of peroxidative cell damage. This paper focused on the use of 2',7'-dichlorofluorescein-diacetate (DCFH-DA) to quantitate cerebral ROS as an index for neurotoxicity. This technique employs an assay of dichlorofluorescein (DCF), the(More)
The effects of the neurotoxic metals methylmercury (MeHg) and trimethyltin (TMT) on oxygen reactive species formation within a crude synaptosomal fraction (P2), using the probe 2',7'-dichlorofluorescin diacetate (DCFH-DA), and intracellular calcium ([Ca2+]i), with the fluorescent indicator fluo-3, have been investigated. Two and seven days after a single(More)
The formation of oxygen reactive species in response to oxidative stimuli was measured in rat synaptosomes. Studies employed the non-fluorescent probe 2?,7?-dichlorofluorescin diacetate (DCFH-DA), which after de-esterification is oxidized in the presence of oxygen reactive species to the highly fluorescent 2?,7?-dichlorofluorescein (DCF). Oxygen reactive(More)
To define the kinetics and safety of spinally infused recombinant-methionyl human brain-derived neurotrophic factor (r-metHuBDNF), beagle dogs were prepared with lumbar intrathecal catheters passed through the cisternal membrane to the L1-L4 lumbar level. For kinetic studies, r-metHuBDNF was delivered by bolus or infusion through one catheter and lumbar CSF(More)
It has been suggested that methyl mercury may express its neurotoxicity by way of iron-mediated oxidative damage. Therefore, the effect of deferoxamine, a potent iron-chelator, on methyl mercury-induced increases in reactive oxygen species formation was studied in rat brain. The generation rate of reactive oxygen species was estimated in crude synaptosomal(More)
The inherent biochemical, anatomical and physiological characteristics of the brain make it especially vulnerable to insult. Specifically, some of these characteristics such as myelin and a high energy requirement provide for the introduction of free radical-induced insult. Recently, the biochemistry of free radicals has received considerable attention. It(More)
The effects of toluene on lipid peroxidation and rates of reactive oxygen species (ROS) formation have been studied in isolated systems and in vivo. The induction of reactive oxygen species was assayed using the probe 2',7'-dichlorofluorescin diacetate (DCFH-DA). Toluene exposure (1 g/kg, 1 hr, i.p.) did not stimulate cortical lipid peroxidation as(More)
Many diseases and aging may be associated with oxidative stress in the brain. However, the effects of oxidative stress in the brain should be more clearly described, especially in terms of effects on brain reduced glutathione (GSH). This issue was addressed by intracerebroventricular injection of a direct-acting oxidative stress inducing agent,(More)
Human obesity may be caused by a resistance to circulating leptin. Evidence from rodents and humans suggests that a major component of this resistance is an impairment in the ability of the blood-brain barrier (BBB) to transport leptin from the blood to the brain. One potential way to bypass the BBB is by administering leptin into the intrathecal (i.t.)(More)