Learn More
Before parturition the uterine cervix undergoes a ripening process ("softens" and dilates) to allow passage of the fetus at term. The exact mechanism(s) responsible for cervical ripening are unknown, though a role for peptidergic sensory neurons is emerging. Previous work demonstrated that administration of substance P (SP) to ovariectomized rats caused(More)
Prior to parturition the non-pliable uterine cervix undergoes a ripening process ("softens" and dilates) to allow a timely passage of the fetus at term. The exact mechanism(s) triggering and involved in cervical ripening are unknown, though evidence for a role for sensory neurons and their contained neuropeptides is emerging. Moreover, an apparent increase(More)
Until relatively recently, most studies of the effects of estradiol in the nervous system focused on hypothalamic, limbic, and other brain centers involved in reproductive hormone output, feedback, and behaviors. Almost no studies addressed estradiol effects at the spinal cord or peripheral nervous system level. Prior to the mid-1960s-1970s, few studies(More)
Central nervous system nuclei and circuits, such as the medial preoptic, ventromedial and paraventricular nuclei of the hypothalamus, play important roles in reproduction and parturition, and are influenced by estrogen. Peripheral autonomic and sensory neurons also play important roles in pregnancy and parturition. Moreover, the steroid hormone estrogen(More)
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase(More)
  • 1