Learn More
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and(More)
Representative, reproducible, and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models-animals, organ explants, and human trials-are not suited for extensive evaluation of(More)
Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a three-dimensional (3D) cell culture system would drive the phenotype of transformed(More)
Exploration class human spaceflight missions will require astronauts with robust immune systems. Innate immunity will be an essential element for the healthcare maintenance of astronauts during these lengthy expeditions. This study investigated neutrophil phagocytosis, oxidative burst, and degranulation of 25 astronauts after four space shuttle missions and(More)
As part of the systematic evaluation of the innate immune system for long duration missions, this study focused on the antimicrobial functions of monocytes in astronauts participating in spaceflight. The study included four space shuttle missions and 25 astronauts. Nine non-astronauts served as controls. Blood specimens were collected 10 days before launch,(More)
Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include(More)
This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground(More)
NatioNal aeroNautics aNd space admiNistratioN (NASA): mark ott 1 and duaNe piersoN 1 JapaN aerospace exploratioN ageNcy (JAXA): masaki shirakawa 2 , Fumiaki taNigaki 2 , masamitsu hida 2 , takashi yamazaki 2,3 , toru shimazu 4 , and Noriaki ishioka 5* Microbiological research and operational efforts at the NASA The ubiquitous nature of microbiology is(More)
BACKGROUND The environment of spaceflight may elevate an astronaut's clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical "incidence" data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS). METHODS Electronic(More)