C. M. Lyneis

Learn More
VENUS is the superconducting electron cyclotron resonance (ECR) ion source at the Lawrence Berkeley National Lab's 88-Inch Cyclotron. To generate neutral atoms for ionization, the source utilizes a resistively- heated high temperature oven that is located in a magnetic field of up to 4 Tesla and operates at temperatures up to about 2000degC. However,(More)
Low cross section experiments to produce super-heavy elements have increased the demand for high intensity heavy ion beams at energies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. Therefore, efforts are underway to increase the overall ion beam transmission through the axial injection line and the cyclotron.(More)
A superconducting magnet assembly has been built for an ECR (Electron Cyclotron Resonance) ion source at the 88-inch cyclotron at LBL. Three 34-cm ID solenoids provide axial plasma confinement and a sextupole assembly in the solenoid bore provides radial stability. Two large solenoids are spaced 50 cm. Apart with a smaller opposing solenoid between. The(More)
A method and first results utilizing a network analyzer as a loaded cavity probe to study the resonance properties of a plasma filled electron cyclotron resonance ion source (ECRIS) plasma chamber are presented. The loaded cavity measurements have been performed using a dual port technique, in which two separate waveguides were used simultaneously. One port(More)
The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the(More)
The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron(More)
The new Advanced ECR (AECR) source is being developed for the 88-in cyclotron at Lawrence Berkeley Laboratory. It operates at 14.5 GHz, compared to 6.4 GHz for the LBL ECR source. An electron gun injects electrons into the plasma chamber to increase the production of high charge state ions. The first AECR beams were injected into the cyclotron in June of(More)
VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement(More)