Learn More
AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity.(More)
Local Ca(2+) signaling occurring within nanometers of voltage-gated Ca(2+) (Cav) channels is crucial for CNS function, yet the molecular composition of Cav channel nano-environments is largely unresolved. Here, we used a proteomic strategy combining knockout-controlled multiepitope affinity purifications with high-resolution quantitative MS for(More)
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are key modulators of neuronal activity by providing the depolarizing cation current I(h) involved in rhythmogenesis, dendritic integration, and synaptic transmission. These tasks critically depend on the availability of HCN channels, which is dynamically regulated by intracellular cAMP; the(More)
There is emerging evidence from functional analyses and molecular research that the role of ion channels in cell physiology is not only determined by the pore-forming subunits but also depends on their molecular environment. Accordingly, the local and temporal specificity of channel-mediated signal transduction is thought to result from association of these(More)
BACKGROUND Interdisciplinary teamwork and team interventions are highly valued in the rehabilitation sector because they can improve outcomes of care for persons with complex health problems. However, little is known about expectations and requests regarding team interventions, especially in medical rehabilitation. This study aimed to explore how clinical(More)