C. Leboucher

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
In the frame of the SPIRAL II (Système de Production d'Ions Radioactifs Accélérés en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to(More)
Up to now, eighteen Target Ion Source Systems (TISSs) have been built and used for the production of radioactive ion beams on SPIRAL 1 facility, based on the IsotopeSeparator-On-Line (ISOL) method. The TISSs are composed of thick carbon targets and of fully permanentmagnet Electron Cyclotron Resonance Ion Sources (ECRISs) of the Nanogan III type. After(More)
Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts(More)
GANIL has been producing many stable and radioactive ion beams for nearly 25 years. Constant progresses have been made in terms of intensity, stability, and reliability. The intensity for some stable metallic beams now exceeds or approaches the p microA level at an energy up to 95 MeV/u, e.g., 1.14 p microA for (36)S (65% enriched) at 77 MeV/u, 0.35 p(More)
The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the(More)
  • 1