C Kay Holtman

Learn More
Synechococcus elongatus PCC 7942 was the first cyanobacterial strain to be reliably transformed by exogenously added DNA and has become the model organism for cyanobacterial circadian rhythms. With a small genome (2.7 Mb) and well-developed genetic tools, PCC 7942 provides an exceptional opportunity to elucidate the circadian mechanism through genetics. We(More)
Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIA(Glc) (formerly known as III(glc)), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose(More)
The catalytic activity of glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inhibited allosterically by IIA(Glc) (previously known as III(Glc)), the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system. A sequentially contiguous portion of glycerol kinase undergoes an(More)
The basic circadian oscillator of the unicellular fresh water cyanobacterium Synechococcus elongatus PCC 7942, the model organism for cyanobacterial circadian clocks, consists of only three protein components: KaiA, KaiB, and KaiC. These proteins, all of which are homomultimers, periodically interact to form large protein complexes with stoichiometries that(More)
Two endogenous plasmids are present in Synechococcus elongatus PCC 7942, a model organism for studying photosynthesis and circadian rhythms in cyanobacteria. The large plasmid, pANL, was shown previously to be involved in adaptation of S. elongatus cells to sulfur starvation, which provided the first evidence of cellular function of a cyanobacterial(More)
Alleles of glpR associated with the same GlpR(-) phenotype produce substitutions in different conserved portions of the glycerol 3-phosphate repressor which are not part of the helix-turn-helix motif. Analysis of the effects on growth and enzyme expression show that glucose repression of glycerol utilization is not dependent on a functional repressor.
  • 1