C. J. Hegedüs

Learn More
INTRODUCTION Anticancer tyrosine kinase inhibitors (TKIs) are small molecule hydrophobic compounds designed to arrest aberrant signaling pathways in malignant cells. Multidrug resistance (MDR) ATP binding cassette (ABC) transporters have recently been recognized as important determinants of the general ADME-Tox (absorption, distribution, metabolism,(More)
Human ABCG2 is a plasma membrane glycoprotein that provides physiological protection against xenobiotics. ABCG2 also significantly influences biodistribution of drugs through pharmacological tissue barriers and confers multidrug resistance to cancer cells. Moreover, ABCG2 is the molecular determinant of the side population that is characteristically(More)
The ABCG2 multidrug transporter protein has been identified as a key player in cancer drug resistance and xenobiotic elimination, as its actively transported substrates include anticancer drugs, intermediates of heme metabolism, xenobiotics, and also drug conjugates. Several transported substrates at higher concentrations, and some anticancer agents even at(More)
The ATP-binding cassette (ABC) transporter ABCG2 plays an important role in tissue detoxification and confers multidrug resistance to cancer cells. Identification of expressional and functional cellular regulators of this multidrug transporter is therefore intensively pursued. The PI3-kinase/Akt signaling axis has been implicated as a key element in(More)
This chapter deals with the interactions of two medically important multidrug ABC transporters (MDR-ABC), ABCB1 and ABCG2, with lipid molecules. Both ABCB1 and ABCG2 are capable of transporting a wide range of hydrophobic drugs and xenobiotics and are involved in cancer chemotherapy resistance. Therefore, the exploration of their mechanism of action has(More)
ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane(More)
Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the(More)
A general method is proposed for calculating the reciprocal series of a given series with matrix coefficients. An application is to the inversion of matrices with entries in the form of rational functions. Es wird eine allgemeine Methode für die Berechnung der reziproken Reihen zu einer gegebenen Potenzreihe mit Matrizenkoeffizienten vorgeschlagen. Eine(More)
ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane(More)