Learn More
We studied the activity of single neurons in the frontal eye fields of awake macaque monkeys trained to perform several oculomotor tasks. Fifty-four percent of neurons discharged before visually guided saccades. Three different types of presaccadic activity were observed: visual, movement, and anticipatory. Visual activity occurred in response to visual(More)
1. An oculomotor delayed-response task was used to examine the spatial memory functions of neurons in primate prefrontal cortex. Monkeys were trained to fixate a central spot during a brief presentation (0.5 s) of a peripheral cue and throughout a subsequent delay period (1-6 s), and then, upon the extinction of the fixation target, to make a saccadic eye(More)
We studied single neurons in the frontal eye fields of awake macaque monkeys and compared their activity with the saccadic eye movements elicited by microstimulation at the sites of these neurons. Saccades could be elicited from electrical stimulation in the cortical gray matter of the frontal eye fields with currents as small as 10 microA. Low thresholds(More)
SUMMARY AND CONCLUSIONS 1. We recorded from single neurons in the dorsal bank and fundus of the anterior portion of the superior temporal sulcus, an area we term the superior temporal polysensory area (STP). Five macaques were studied under anesthesia (N20) and immobilization in repeated recording sessions. 2. Almost all of the neurons were visually(More)
Previous studies have reported that some neurons in the inferior temporal (IT) cortex respond selectively to highly specific complex objects. In the present study, we conducted the first systematic survey of the responses of IT neurons to both simple stimuli, such as edges and bars, and highly complex stimuli, such as models of flowers, snakes, hands, and(More)
1. We studied the activity of single neurons in the monkey frontal eye fields during oculomotor tasks designed to assess the activity of these neurons when there was a dissonance between the spatial location of a target and its position on the retina. 2. Neurons with presaccadic activity were first studied to determine their receptive or movement fields and(More)
Frontal eye field (FEF) projections to posterior cortical areas were mapped by autoradiography of tritiated amino acids (Leu, Pro) in six macaque monkeys. In three monkeys, the large saccade part of the FEF (IFEF) was identified by microstimulation and injected with tracers. In a fourth monkey, the small saccade part of the FEF (sFEF) was identified by(More)
The spatial memory functions of the monkey's prefrontal cortex were examined with oculomotor delayed-response (ODR) paradigms that required the animal to remember the spatial location of peripheral visual cues, while maintaining fixation on a central visual target during the presentation of each cue and during a subsequent 1.5-8 sec delay period. Four(More)
Physiological and behavioral data reported here show an involvement of the primate frontal eye field (FEF) cortex in smooth-pursuit eye movements, in addition to its well-established role in saccadic eye movements. Microstimulation just ventral to the small saccade representation of the FEF elicits eye movements that, in contrast to elicited saccades, have(More)
1. We electrically stimulated the macaque monkey's frontal eye field (FEF) region to localize and to analyze the smooth pursuit eye movement representation. Rhesus monkeys were trained to fixate stationary spots of light, and trains of stimulation (usually 250-500 ms at 10-100 microA) were applied while the fixation targets remained lit and stationary. This(More)